Exercise 3E RS Aggarwal Class 9

Exercise 3E RS Aggarwal Class 9 contains solutions of all the ten questions. The questions are based on the following topic.

Cube of a Binomial:
(i) (x+y)3=x3+y3+3xy(x+y)
(ii) (xy)3=x3+y33xy(xy)

Exercise 3E RS Aggarwal Class 9 Mathematics Solutions

The question number 1 of Exercise 3E RS Aggarwal Class 9 asks us to expand the given algebraic expression.

1. Expand:

(i). (3x+2)3

We have
(3x+2)3

= (3x)3+23+3·3x·2·(3x+2) ... [ (x+y)3=x3+y3+3xy(x+y)]

= 33·x3+23+18x·(3x+2)

= 33·x3+23+18x·(3x+2)

= 27x3+8+54x2+36x.

(ii). (3a+14b)3

We have
(3a+14b)3

= (3a)3+(14b)3+3·3a·14b·(3a+14b) ... [ (x+y)3=x3+y3+3xy(x+y)]

= 33a3+13(4b)3+9a4b·(3a+14b)

= 27a3+164b3+9a4b·3a+9a4b·14b

= 27a3+164b3+27a24b+9a16b2

(ii). (1+23a)3

We have
(1+23a)3

= 13+(23a)3+3·1·23a·(1+23a) ... [ (x+y)3=x3+y3+3xy(x+y)]

= 1+2333a3+2a·(1+23a)

= 1+827a3+2a·1+2a·23a

= 1+827a3+2a+4a23.

The question number 2 of Exercise 3E RS Aggarwal Class 9 asks us to expand the given algebraic expression.

2. Expand

(i). (5a3b)3

We have
(5a3b)3

= (5a)3(3b)33·5a·3b·(5a3b) ... [ (xy)3=x3+y33xy(xy)]

= 53·a333·b345ab·(5a3b)

= 125a327b345ab·5a+45ab·3b

= 125a327b3225a2b+135ab2.

(ii). (3x5x)3

We have
(3x5x)3

= (3x)3(5x)33·3x·5x·(3x5x) ... [ (xy)3=x3+y33xy(xy)]

= 33·x353x345·(3x5x)

= 33·x353x3135x+225

= 27x3125x3135x+225x.

(iii). (45a2)3

We have
(45a2)3

= (45a)3233·45a·2·(45a2) ... [ (xy)3=x3+y33xy(xy)]

= 4353a3233·45a·2·(45a2)

= 64125a3824a5·(45a2)

= 64125a3824a5·45a+24a5·2

= 64125a389625a2+485a.

The question number 3 of Exercise 3E RS Aggarwal Class 9 asks us to factorise the given algebraic expression.

Factorise

3. 8a3+27b3+36a2b+54ab2

We have
8a3+27b3+36a2b+54ab2

= (2a)3+(3b)3+3×(2a)2×3b+3×(2a)×(3b)2
Using x3+y3+3x2y+3xy2=(x+y)3, where x=2a, y=3b, we get

= (2a+3b)3

= (2a+3b)(2a+3b)(2a+3b).

The question number 4 of Exercise 3E RS Aggarwal Class 9 asks us to factorise the given algebraic expression.

4. 64a327b3144a2b+108ab2

We have
64a327b3144a2b+108ab2

= (4a)3(3b)33×(4a)2×3b+3×(4a)×(3b)2
Using x3y33x2y+3xy2=(xy)3, where x=4a, y=3b, we get

= (4a3b)3

= (4a3b)(4a3b)(4a3b).

The question number 5 of Exercise 3E RS Aggarwal Class 9 asks us to factorise the given algebraic expression.

5. 1+27125a3+9a5+27a225

We have
1+27125a3+9a5+27a225

= 13+3353a3+3×12×35a+3×1×3252a

= 13+(35a)3+3×12×35a+3×1×(35a)2
Using identity x3+y3+3x2y+3xy2=(x+y)3, where x=1, y=35a, we get

= (1+35a)3

= (1+35a)(1+35a)(1+35a).

The question number 6 of Exercise 3E RS Aggarwal Class 9 asks us to factorise the given algebraic expression.

6. 125x327y3225x2y+135xy2

We have
125x327y3225x2y+135xy2

= 53·x333·y33·52·x2·3y+3·5x×32·y2

= (5x)3(3y)33·(5x)2·(3y)+3·5x·(3y)2

= (5x)3(3y)33·(5x)2·(3y)+3·5x·(3y)2
Using the identity x3y33x2y+3xy2=(xy)3, we get

= (5x3y)3

= (5x3y)(5x3y)(5x3y).

The question number 7 of Exercise 3E RS Aggarwal Class 9 asks us to factorise the given algebraic expression.

7. a3x33a2bx2+3ab2xb3

We have
a3x33a2bx2+3ab2xb3

= (ax)33·(ax)2·b+3·ax·b2b3
Using the identity x33x2y+3xy2y3=(xy)3, we get

= (axb)3

= (axb)(axb)(axb)

The question number 8 of Exercise 3E RS Aggarwal Class 9 asks us to factorise the given algebraic expression.

8. 64125a39625a2+485a8

We have
64125a39625a2+485a8

= 4353·a33·4252a2·2+3·45a·2223

= (45a)33·(45a)2·2+3·45a·2223
Using the identity x33x2y+3xy2y3=(xy)3, where x=45a, y=2, we get

= (45a2)3

= (45a2)(45a2)(45a2)

The question number 9 of Exercise 3E RS Aggarwal Class 9 asks us to factorise the given algebraic expression.

9. a312a(a4)64

We have
a312a(a4)64

= a312a2+48a64

= a33·a2·4+3·a·4243
Using the identity x33x2y+3xy2y3=(xy)3, where x=a, y=4.

= (a4)3

= (a4)(a4)(a4).

The question number 10 of Exercise 3E RS Aggarwal Class 9 asks us to factorise the given algebraic expression.

10. Evaluate

(i) (103)3

We have
(103)3

= (100+3)3
Applying the identity : (x+y)3=x3+y3+3xy(x+y)

= (100)3+33+3·(100)2·3+3·100·32

= 1000000+27+90000+2700

= 1092727.

(ii) (99)3

We have
(99)3

= (1001)3

= (1001)3
Applying the identity : (x+y)3=x3+y3+3xy(x+y)

= (100)3133·(100)2·1+3·100·12

= 1000000130000+300

= 100030030001

= 970299.

Scroll to Top