Exercise 2.4 NCERT Class 9 Solutions

Exercise 2.4 NCERT Class 9 contains a total of 16 questions. The questions are based on the topic: Algebraic Identities.

  Algebraic Identities:
Identity I: (x+y)2=x2+2xy+y2
Identity II: (xy)2=x22xy+y2
Identity III: x2y2=(x+y)(xy)
Identity IV: (x+a)(x+b)=x2+(a+b)x+ab
Identity V: (x+y+z)2=x2+y2+z2+2xy+2yz+2zx
Identity VI: (x+y)3=x3+3x2y+3xy2+y3
Identity VII: (xy)3=x33x2y+3xy2y3
Identity VIII: x3+y3+z33xyz=(x+y+z)(x2+y2+z2xyyzzx)

Exercise 2.4 NCERT Class 9 Polynomials Mathematics Solutions

The first question of Exercise 2.4 NCERT Class 9 asks us to find products using suitable identities.

1. Use suitable identities to find the following products:

(i) (x+4)(x+10)

We have
(x+4)(x+10)

=x2+(10+4)x+4×10 ... [ (x+a)(x+b)=x2+(a+b)x+ab]

= x2+14x+40.

(ii) (x+8)(x10)

We have
(x+8)(x10)

=x2+{8+(10)}x+8×(10) ... [ (x+a)(x+b)=x2+(a+b)x+ab]

=x2+{810}x80

=x2+{2}x80

= x22x80.

(iii) (3x+4)(3x5)

We have
(3x+4)(3x5)

= (3x)2+{4+(5)}x+4×(5) ... [ (x+a)(x+b)=x2+(a+b)x+ab]

= 9x2+{45}x20

= 9x2+{1}x20

= 9x2x20.

(iv) (y2+32)(y232)

We have
(y2+32)(y232)

= (y2)2(32)2 ... [ x2y2=(x+y)(xy)]

= y43222

= y494

(iv) (32x)(3+2x)

We have
(32x)(3+2x)

= 32(2x)2 ... [ x2y2=(x+y)(xy)]

= 94x2

The second question of Exercise 2.4 NCERT Class 9 asks us to find the product of numbers using suitable identities.

2. Evaluate the following products without multiplying directly:

(i) 103×107

We have
103×107

= (100+3)(100+7)
Applying (x+a)(x+b)=x2+(a+b)x+ab,
where, x=100,a=3 and b=7

= (100)2+(3+7)×100+3×7

= 10000+10×100+21

= 10000+1000+21

= 11021

(ii) 95×96

We have
95×96

= (1005)(1004)
Applying [(x+a)(x+b)=x2+(a+b)x+ab]
where x=100, a=5 and b=4

= (100)2+{(5)+(4)}×100+(5)×(4)

= (100)2+{(5)+(4)}×100+(5)×(4)

= 10000+{54}×100+20

= 10000+{9}×100+20

= 10000900+20

= 10020900

= 9120

(iii) 104×96

We have
104×96

= (100+4)(1004)

= (100)242

= 1000016

= 9984

The third question of Exercise 2.4 NCERT Class 9 asks us to factorise the given algebraic expressions using appropriate identities:

3. Factorise the following using appropriate identities:

(i) 9x2+6xy+y2

We have
9x2+6xy+y2

= (3x)2+2×(3x)×y+y2
Applying (a+b)2=a2+2ab+b2,
where a=3x, b=y.

= (3x+y)2

= (3x+y)(3x+y).

(ii) 4y2+4y+1

We have
4y2+4y+1

= (2y)2+2×(2y)×1+12
Applying (a+b)2=a2+2ab+b2,
where a=2y, b=1.

= (2y+1)2

= (2y+1)(2y+1)

(iii) x2y2100

We have
x2y2100

= x2(y10)2
Applying a2b2=(a+b)(ab),
where a=x, b=y10.

= (x+y10)(xy10)

The fourth question of Exercise 2.4 NCERT Class 9 asks us to expand the given algebraic expressions using suitable identities:

4. Expand each of the following, using suitable identities:

(i) (x+2y+4z)2

We have
(x+2y+4z)2

= x2+(2y)2+(4z)2+2·x·2y+2·2y·4z+2·4z·x ... [ (a+b+c)2=a2+b2+c2+2ab+2bc+2ca]

= x2+22·y2+42·z2+4xy+16yz+8zx

= x2+4y2+16z2+4xy+16yz+8xz

(ii) (2xy+z)2

We have
(2xy+z)2

=(2x)2+(y)2+z2+2·2x·(y)+2·(y)·z+2·z·(2x) ... [ (a+b+c)2=a2+b2+c2+2ab+2bc+2ca]

= 22·x2+y2+z24xy2yz+4zx

= 4x2+y2+z24xy2yz+4zx

(iii) (2x+3y+2z)2

We have
(2x+3y+2z)2

=(2x)2+(3y)2+(2z)2+2·(2x)·(3y)+2·(3y)·(2z)+2·(2z)·(2x) ... [ (a+b+c)2=a2+b2+c2+2ab+2bc+2ca]

= (2)2·x2+32·y2+22·z212xy+12yz8zx

= 4x2+9y2+4z212xy+12yz8zx

(iv) (3a7bc)2

We have
(3a7bc)2

=(3a)2+(7b)2+(c)2+2·(3a)·(7b)+2·(7b)·(c)+2·(c)·(3a) ... [ (a+b+c)2=a2+b2+c2+2ab+2bc+2ca]

= 32·a2+(7)2b2+c242ab+14bc6ca

= 9a2+49b2+c242ab+14bc6ca

(v) (2x+5y3z)2

We have
(2x+5y3z)2

=(3a)2+(7b)2+(c)2+2·(3a)·(7b)+2·(7b)·(c)+2·(c)·(3a) ... [ (a+b+c)2=a2+b2+c2+2ab+2bc+2ca]

= 32·a2+(7)2b2+c242ab+14bc6ca

= 9a2+49b2+c242ab+14bc6ca

(vi) [14a12b+1]2

We have
[14a12b+1]2

=(14a)2+(12b)2+12+2·(14a)·(12b)+2·(12b)·1+2·1·(14a) ... [(x+y+z)2=x2+y2+z2+2xy+2yz+2zx]

= (14)2a2+(12)2b2+12ab4b+12a

= a216+b24+1ab4b+a2.

The fifth question of Exercise 2.4 NCERT Class 9 asks us to factorise the given algebraic expressions.

5. Factorise:

(i) 4x2+9y2+16z2+12xy24yz16xz

Since the terms 24yz and 16xz are negative and z is common in both, we write the term 16z2=(4z)2.

We have
4x2+9y2+16z2+12xy24yz16xz

=(2x)2+(3y)2+(4z)2+2·2x·3y+2·3y·(4z)+2·(4z)·2x

=[2x+3y+(4z)]2

=(2x+3y4z)2

=(2x+3y4z)(2x+3y4z)

(ii) 2x2+y2+8z222xy+42yz8xz

Since the terms 22xy and 8xz are negative and x is common in both, we write the term 2x2=(2x)2.

We have
2x2+y2+8z222xy+42yz8xz

=(2x)2+y2+(22z)2+2·(2x)·y+2·y·(22z)+2·(22z)·(2x)

=[2x+y+22z]2

=(2x+y+22z)2

= (2x+y+22z)(2x+y+22z)

The sixth question of Exercise 2.4 NCERT Class 9 asks us to write the cubes in expanded form:

6. Write the following cubes in expanded form:

(i) (2x+1)3

We have
(2x+1)3

= (2x)3+3·(2x)2·1+3·(2x)·12+13 ... [ (a+b)3=a3+3a2b+3ab2+b3]
where a=2x, b=1

= 23·x3+3·22·x2·1+3·2·x·1+1

= 8x3+3·4·x2·1+6x+1

= 8x3+12x2+6x+1

(ii) (2a3b)3

We have
(2a3b)3

= (2a)33·(2a)2·(3b)+3·(2a)·(3b)2(3b)3 ... [ (x+y)3=x3+3x2y+3xy2+y3],
where x=2a, y=3b.

= 23·a33·22·a2·3b+3·2a·32·b233·b3

= 8a33·4·3·a2b+3·2·9·ab227b3

= 8a33·4·3·a2b+3·2·9·ab227b3

= 8a336a2b+54ab227b3

(iv) [32x+1]3

We have
[32x+1]3

= (32x)3+3·(32x)2·1+3·(32x)·12+13 ... [ (ab)3=a33a2b+3ab2b3]
where a=32x, b=1.

= (32)3·x3+3·(32)2·x2·1+3·(32)·x·1+1

= 3323·x3+3·3222·x2·1+3·32·x·1+1

= 278x3+274x2+92x+1

(iv) [x23y]3

We have
[x23y]3

= (x)33·x2·(23y)+3·x·(23y)2(23y)3 ... [ (ab)3=a33a2b+3ab2b3],
where a=x, b=23y.

= x33·x2·23y+3·x·2232·y22333·y3

= x32x2y+43xy2827y3

The seventh question of Exercise 2.4 NCERT Class 9 asks us to evaluate the given numbers using suitable identities.

7. Evaluate the following using suitable identities:

(i) (99)3

We have
(99)3

= (1001)3 ... [ 99=1001]

= (100)33·(100)2·1+3·100·1213 ... [ (ab)3=a33a2b+3ab2b3],
where a=100, b=1.

= 10000003×10000+3001

= 100000030000+3001

= 100030030001

= 970299.

(ii) (102)3

We have
(102)3

= (100+2)3 ... [ 102=100+2]

Applying (x+y)3=x3+3x2y+3xy2+y3,
where x=100, y=2.

= (100)3+3·(100)2·2+3·100·22+23

= (100)3+3·(100)2·2+3·100·22+23

= 1000000+60000+1200+8

= 1061208

(ii) (998)3

We have
(998)3

= (10002)3

= (1000)33·(1000)2·2+3·1000·2223

= 10000000003·1000000·2+3·1000·48

= 10000000006000000+120008

= 10000120006000008

= 994011992

The eighth question of Exercise 2.4 NCERT Class 9 asks us to factorise the given algebraic identities using suitable identities.

8. Factorise each of the following:

(i) 8a3+b3+12a2b+6ab2

We have
8a3+b3+12a2b+6ab2

= (2a)3+b3+3·(2a)2·b+3·2a·b2
Applying (x3+y3+3x2y+3xy2)=(x+y)3,
where x=2a, y=b.

= (2a+b)3

= (2a+b)(2a+b)(2a+b)

(ii) 8a3b312a2b+6ab2

We have
8a3b312a2b+6ab2

= (2a)3b33·(2a)2·b+3·2a·b2
Applying (x3y33x2y+3xy2)=(xy)3,
where x=2a, y=b.

= (2ab)3

= (2ab)(2ab)(2ab)

(iii) 27125a3135a+225a2

We have
27125a3135a+225a2

= (3)3(5a)33·(3)2·5a+3·3·(5a)2
Applying (x3y33x2y+3xy2)=(xy)3
where x=3, y=5a

= (35a)3

= (35a)(35a)(35a).

(iv) 64a327b3144a2b+108ab2

We have
64a327b3144a2b+108ab2

= (4a)3(3b)33·(4a)2·3b+3·4a·(3b)2
Applying (x3y33x2y+3xy2)=(xy)3
where x=4a, y=3b.

= (4a3b)3

= (4a3b)(4a3b)(4a3b)

(v) 27p3121692p2+14p

We have
27p3121692p2+14p

= (3p)3(16)33·(3p)2·16+3·3p·(16)2
Applying (x3y33x2y+3xy2)=(xy)3
where x=3p, y=16

= (3p16)3

= (3p16)(3p16)(3p16).

The ninth question of Exercise 2.4 NCERT Class 9 asks us to verify the given algebraic identities.

9. Verify:

(i) x3+y3=(x+y)(x2xy+y2)

To Verify: x3+y3=(x+y)(x2xy+y2)

Taking RHS, we have
(x+y)(x2xy+y2)

= x(x2xy+y2)+y(x2xy+y2)

= x3x2y+xy2+yx2xy2+y3

= x3+y3 ... [ x2y+yx2=0, xy2xy2=0]

= LHS
Hence, verified.

(ii) x3y3=(xy)(x2+xy+y2)

To Verify: x3y3=(xy)(x2+xy+y2)

Taking RHS, we have
(xy)(x2+xy+y2)

= x(x2+xy+y2)y(x2+xy+y2)

= x3+x2y+xy2yx2xy2y3

= x3y3 ... [ x2yyx2=0, xy2xy2=0]

= LHS
Hence, verified.

The eleventh question of Exercise 2.4 NCERT Class 9 asks us to factorise the given algebraic expression.

11. Factorise : 27x3+y3+z39xyz

We have
27x3+y3+z39xyz

= (3x)3+y3+z3-3·(3x)·y·z
Applying a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca)
where a=3x, b=y, c=z

= (3x+y+z){(3x)2+y2+z2(3x)·yy·zz·3x}

= (3x+y+z){(3x)2+y2+z2(3x)·yy·zz·3x}

= (3x+y+z)(9x2+y2+z23xyyz3zx)

The twelfth question of Exercise 2.4 NCERT Class 9 asks us to verify the given algebraic equation.

12. Verify that x3+y3+z33xyz=12(x+y+z)[(xy)2+(yz)2+(zx)2]

To verify:
x3+y3+z33xyz=12(x+y+z)[(xy)2+(yz)2+(zx)2]

Taking LHS, we have
x3+y3+z33xyz

=(x+y+z)(x2+y2+z2xyyzzx) ... [Using identities]

Multiplying and dividing by 2, we get.

(x+y+z)×12×2×(x2+y2+z2xy-yz-zx)

=12(x+y+z)×2×(x2+y2+z2xy-yz-zx)

=12(x+y+z)(2x2+2y2+2z22xy-2yz-2zx)

=12(x+y+z)(x2+x2+y2+y2+z2+z22xy-2yz-2zx)

=12(x+y+z)(x2+y22xy+y2+z2-2yz+x2+z2-2zx)

=12(x+y+z){(x2+y22xy)+(y2+z2-2yz)+(x2+z2-2zx)}

=12(x+y+z){(x-y)2+(yz)2+(zx)2}

= RHS.
Hence, verified.

You can do this by simplifying RHS also.

The thirteenth question of Exercise 2.4 NCERT Class 9 asks us to prove an equality at a given condition.

13. If x+y+z=0, show that x3+y3+z3=3xyz.

We have,
x+y+z=0

Cubing on both sides, we get
(x+y+z)3=0

(x+y+z)2(x+y+z)=0

(x2+y2+z2+2xy+2yz+2zx)(x+y+z)=0 ... [ (x+y+z)2=x2+y2+z2+2xy+2yz+2zx]

x(x2+y2+z2+2xy+2yz+2zx)+y(x2+y2+z2+2xy+2yz+2zx)+z(x2+y2+z2+2xy+2yz+2zx)=0

x3+xy2+xz2+2x2y+2xyz+2zx2+yx2+y3+yz2+2xy2+2y2z+2zxy+zx2+zy2+z3+2xyz+2yz2+2z2x=0
Adding like terms, we get

x3+y3+z3+6xyz+3xy2+3xz2+3x2y+3zx2+3yz2+3y2z=0
Adding and subtracting 3xyz, we get

x3+y3+z33xyz+9xyz+3xy2+3xz2+3x2y+3zx2+3yz2+3y2z=0
Now, regrouping the terms to get (x+y+z) as common, we get

x3+y3+z33xyz+(3x2y+3xy2+3xyz)+(3zx2+3xyz+3xz2)+(3xyz+3y2z+3yz2)=0
Taking common as much as possible from each group, we get

x3+y3+z33xyz+3xy(x+y+z)+3zx(x+y+z)+3yz(x+y+z)=0

x3+y3+z33xyz+(3xy+3zx+3yz)(x+y+z)=0

x3+y3+z33xyz+(3xy+3zx+3yz)×0=0 ... [ (x+y+z)=0]

x3+y3+z33xyz+0=0

x3+y3+z33xyz=0

x3+y3+z3=3xyz
Hence proved!

The fourteenth question of Exercise 2.4 NCERT Class 9 asks us to find the value of the given expressions.

14. Without actually calculating the cubes, find the value of each of the following:

(i) (12)3+73+53

We have
(12)3+73+53

 (12+7+5)=0

 (12)3+73+53=3×(12)×7×5=1260 ... [ (x+y+z)=0 x3+y3+z3=3xyz]

(i) (28)3+(15)3+(13)3

We have
(28)3+(15)3+(13)3

 28+(15)+(13)=0

 (28)3+(15)3+(13)3=3×28×(15)×(13)=16380 ... [ (x+y+z)=0 x3+y3+z3=3xyz]

The fifteenth question of Exercise 2.4 NCERT Class 9 is a word problem based on algebraic identities.

15. Give possible expressions for the length and breadth of each of the following rectangles, in which thier areas are given:

(i) Area : 25a235a+12

Let the length of the rectangle be l, and breadth be b.

∵ Area of the rectangle = 25a235a+12
l×b=25a235a+12

l×b=25a220a15+12 ...[ 35=20+15, 25×12=20×15]

l×b=5a(5a4)3(5a4)

l×b=(5a3)(5a4)
Comparing on both sides we get

l=(5a3), b=(5a4)

This is one possibility. There may be many other values.

(ii) Area : 35y2+13y12

Let the length of the rectangle be l, and breadth be b.

∵ Area of the rectangle = 35y2+13y12
l×b=35y2+13a12

l×b=35y2+(2815)y12 ... [ 13=2815, 35×12=28×15]

l×b=35y2+28y15y12

l×b=7y(5y+4)3(5y+4)

l×b=(7y3)(5y+4)

On comparing on both sides,
l=(7y3), b=(5y+4)

This is one possibility. There may be many other values.

The sixteenth question of Exercise 2.4 NCERT Class 9 is a word problem based on algebraic identities.

16. What are the possible expressions for the dimensions of the cuboids whose volumes are given below?

(i) Volume : 3x212x

Let the length, breadth and height of the cuboid be l,b and h respectively.

∵ Volume = 3x212x

l×b×h=3x212x

l×b×h=3x(x4)

l×b×h=3×x×(x4)

On comparing, we get
l=3, b=x, h=(x4)

Hence, the one possible answer is 3, x, x4.

(ii) Volume : 12ky2+8ky20k

Let the length, breadth and height of the cuboid be l,b and h respectively.

∵ Volume = 12ky2+8ky20k

 l×b×h=12ky2+8ky20k

l×b×h=4k(3y2+2y5)

l×b×h=4k(3y2+5y3y5) ... [ 2=53, 15=5×3]

l×b×h=4k{y(3y+5)1(3y5)}

l×b×h=4k{y(3y+5)1(3y5)}

l×b×h=4k(y1)(3y5)

On comparing both sides, we get
l=4k, b=(y1), h=(3y5)

Hence, one possible answer is : 4k, (y1), (3y5).

Scroll to Top