Exercise 2.2 NCERT Class 9

Exercise 2.2 NCERT Class 9 contains a total of four questions. The questions are based on the following topics.

  • Zeroes of a Polynomial
  • Roots of a Polynomial
  • Value of a Polynomial at a point
  • Verifying a zero of a Polynomial

Exercise 2.2 NCERT Class 9 Polynomials Solutions

The first question in Exercise 2.2 NCERT Class 9 is about finding the value of the polynomial at a point.

1. Find the value of the polynomial 5x4x2+3 at
(i) x=0
(ii) x=-1
(iii) x=2

The given polynomial is 5x4x2+3.

(i) putting x=0 in the polynomial, we get.
5x4x2+3
= 5(0)4(0)2+3
= 00+3
= 3

(ii) putting x=1 in the polynomial, we get.
5x4x2+3
=5(1)4(1)2+3
=54×1+3
=6

(iii) putting x=2 in the polynomial, we get.
5x4x2+3
=5(2)4(2)2+3
=104×4+3
=1016+3
=3

The second question of Exercise 2.2 NCERT Class 9 asks us to find value of a polynomial at a point.

2. Find p(0), p(1) and p(2) for each of the following polynomials:

(i) p(y)=y2y+1

The given polynomial is
p(y)=y2y+1

Putting y=0, we get.
p(0)=020+1
=00+1
=1.

Putting y=1, we get.
p(1)=121+1
=11+1
=1

Putting y=2, we get.
p(2)=222+1
=42+1
=3

(ii) p(t)=2+t+2t2t3

The given polynomial is
p(t)=2+t+2t2t3

Putting t=0, we get.
p(0)=2+0+2(0)203
=2+0+00
=2

Putting t=1, we get.
p(1)=2+1+2(1)213
=2+1+21
=4

Putting t=2, we get.
p(2)=2+2+2(2)223
=2+2+88
=4

(iii) p(x)=x3

The given polynomial is
p(x)=x3

Putting x=0, we get.
p(0)=03
=0.

Putting x=1, we get.
p(1)=13
=1.

Putting x=2, we get.
p(2)=23
=8.

(iv) p(x)=(x-1)(x+1)

The given polynomial is
p(x)=(x-1)(x+1)

Putting x=0, we get.
p(0)=(01)(0+1)
=(-1)×1
=1

Putting x=1, we get.
p(1)=(11)(1+1)
=0×2
=0

Putting x=2, we get.
p(2)=(21)(1+1)
=1×2
=2

In Exercise 2.2 NCERT Class 9, the third question asks us to verify whether the given zeroes are zeroes of the polynomial, indicated against them.

3. Verify whether the following are zeroes of the polynomial, indicated against them.

(i) p(x)=3x+1, x=13

The given polynomial is p(x)=3x+1.
Putting x=13, we get.

p(13)=3(13)+1 = 1+1 = 0

 p(13)=0, x=13 is a zero of the given polynomial.

(ii) p(x)=5xπ, x=45

We have
p(x)=5xπ

Putting x=45, we get.

p(45)=5×45π=4π

 p(45)0, x=45 is not a zero of the given polynomial.

(iii) p(x)=x21, x=1,1

We have
p(x)=x21

Putting x=1, we get.
p(1)=121=11=0
 p(1)=0, 1 is a zero of p(x).

Putting x=−1, we get.
p(1)=(1)21=11=0
 p(1)=0, −1 is a zero of p(x).

(iv) p(x)=(x+1)(x2), x=1,2

We have
p(x)=(x+1)(x2)
Putting x=1, we get.
p(1)=(1+1)(12)=0×(3)=0
 p(1)=0, −1 is a zero of p(x).

Putting x=2, we get.
p(2)=(2+1)(22)=3×0=0.
 p(2)=0, 2 is a zero of p(x).

(v) p(x)=x2, x=0

We have
p(x)=x2

Putting x=0, we get.
p(0)=02=0.
 p(0)=0, 0 is a zero of p(x).

(vi) p(x)=lx+m, x=ml

We have
p(x)=lx+m

Putting x=-ml, we get.
p(ml)=l×(ml)+m=m+m=0
 p(ml)=0, -ml is a zero of p(x).

(vii) p(x)=3x21, x=13,23

We have,
p(x)=3x21

Putting x=-13, we get.

p(13)=3(13)21=3×131=11=0

 p(13)=0, -13 is a zero of p(x).

Putting x=23, we get.

p(23)=3×(23)21=3×431=41=3

 p(23)0, 23 is not a zero of p(x).

(viii) p(x)=2x+1, x=12

We have
p(x)=2x+1

Putting x=12, we get.

p(12)=2×12+1=1+1=2

 p(12)0, 12 is not a zero of p(x).

In Exercise 2.2 NCERT Class 9, the fourth question asks us to find out the zero of the given polynomial.

4. Find the zero of the polynomial in each of the following cases:

(i) p(x)=x+5

Let 'a' be a zero of p(x).
 p(a)=0
a+5=0
a=−5.
Hence, −5 is the zero of the polynomial p(x).

(ii) p(x)=x5

Let 'a' be a zero of p(x).
 p(a)=0
a5=0
a=5.
Hence, 5 is the zero of the polynomial p(x).

(iii) p(x)=2x+5

Let 'a' be a zero of p(x).
 p(a)=0
2a+5=0
2a=−5.
a=-52
Hence, -52 is the zero of the polynomial p(x).

(iv) p(x)=3x2

Let 'a' be a zero of p(x).
 p(a)=0
3a2=0
3a=2.
a=23
Hence, 23 is the zero of the polynomial p(x).

(v) p(x)=3x

Let 'a' be a zero of p(x).
 p(a)=0
3a=0
a=0
Hence, 0 is the zero of the polynomial p(x).

(vi) p(x)=ax, a0

Let 'y' be a zero of p(x).
 p(y)=0
ay=0
y=0a=0
Hence, 0 is the zero of the polynomial p(x).

(vi) p(x)=cx+d, c0,c,d are real numbers.

Let 'a' be a zero of p(x).
 p(a)=0
ca+d=0
ca=−d
a=-dc
Hence, -dc is the zero of the polynomial p(x).

Scroll to Top